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Abstract
Using the method of the Lie theory of extended groups and for the parameter
values σ = 1

2 , b = 1 and r = 0 we construct explicitly the general exact
solution to the real Lorenz equations in terms of Jacobian elliptic functions. In
the context of our approach further possible completely integrable cases of the
Lorenz system are discussed by considering the result of the Painlevé analysis
for σ = 1, b = 2 and r = 1/9 and negative values of r , the latter case, r < 0,
for b > 0 and σ > 0 not following from the Painlevé test. For other positive
parameter values and in the form of appropriate power series we find some
particular exact solutions which do not possess the Painlevé property.

PACS numbers: 02.30.Hq, 02.30.-f

1. Introduction

The system of nonlinear differential equations

ẋ = σ(−x + y) (1.1)

ẏ = rx − y − xz (1.2)

ż = −bz + xy (1.3)

where the dot denotes differentiation with respect to the time, t , and σ , b and r are non-negative
parameters, was proposed by Lorenz [16] in the context of a problem related to meteorology.
In recent years the system of differential equations (1.1)–(1.3) has attracted much interest,
mainly because of its mathematical properties [3, 6, 21, 22, 25]. In fact systems such as the
above are difficult to treat both analytically and numerically. Furthermore they usually depend
upon various parameters and exhibit for different ranges of values of the parameters completely
different behaviours. For instance in the Lorenz system for r � 1 and σ ≈ 1 we have a limit
cycle whereas for r ≈ σ � 1 the solution can be chaotic.
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It is worth noting here that one has to exercise care when adopting numerical results related
to nonlinear systems of differential equations [22]. As an example we mention the numerical
result that for fixed b and σ the system (1.1)–(1.3) undergoes successive transitions between
periodic and aperiodic behaviour as r increases [17], a result not confirmed for b = 2σ ,
b = constant and increasing r > 1 in the framework of an analysis of (1.1)–(1.3) by means of
the theory of nonlinear differential equations [3].

With the exception of studies dealing with the Painlevé property [25] and the construction
of first integrals [21] of the Lorenz system most of the work done on the system (1.1)–(1.3) is
mainly numerical. However, it is a rather common knowledge that sometimes, as noted above,
numerical investigations of coupled nonlinear differential equations may fail to reveal important
aspects of the behaviour of their solutions. Motivated by the above fact and since analytic
solutions do provide a reliable test for the accuracy and feasibility of numerical algorithms,
we initiate in the present paper an analytical study of the Lorenz equations (1.1)–(1.3).

Provided the parameters b and σ fulfil the constraint b = 2σ , the Lorenz system is reduced
essentially either: (i) to a generalized Emden–Fowler equation or; (ii) to a time-dependent
oscillator with constant coefficient anharmonic term. By utilizing the vehicle of the Lie theory
of extended groups [5, 9] in approach (i) or the Painlevé analysis [19] in approach (ii) we
explicitly construct the general exact solution to equations (1.1)–(1.3) valid for σ = 1

2 , b = 1
and r = 0. Further the possible existence of completely integrable cases of the system (1.1)–
(1.3) for the parameter sets (σ = 1, b = 2, r = 1/9) and (b = 2σ, σ > 0, r < 0), the r < 0
case not being covered by a Painlevé analysis of equations (1.1)–(1.3), are discussed in the
context of approach (i). The extension of the range of applicability of results originating from
a Painlevé analysis in approach (ii) allows us to find for other positive parameter values and
expressed as power series some particular exact solutions not possessing the Painlevé property.
The connection to previous analytic results is discussed wherever it is appropriate.

The results which we obtain indicate both the power and the limitations of the Painlevé
analysis. When it works (the precise conditions can be found, for example, in Conte [1]), we
know that the system under consideration has a solution in terms of functions analytic except
at pole-like singularities (algebraic branch points in the case of the so-called ‘weak’ Painlevé
property). A standard criterion for the possession of the Painlevé property is that all possible
patterns of singular behaviour pass the Painlevé test [24] and yet there exist instances [11] for
which this criterion is not satisfied and yet the solution of the system is manifestly analytical
except for its correct singularities. Some of the results presented here, as has been reported in
divers contexts [8,10,12,15], emphasize the point that a satisfactory definition of integrability
persists in remaining elusive.

2. Reduction of the Lorenz system to an Emden–Fowler equation

From the Lorenz equations (1.1)–(1.3) we deduce the equivalent system

ẍ + (σ + 1)ẋ + σ(1 − r)x = −σxz (2.1)

ż + bz = d

dt

(
x2

2σ

)
+ x2 (2.2)

ẋ = σ(−x + y). (2.3)

Equation (2.2) yields

z(t) = C exp(−bt) +
x2

2σ
+ exp(−bt)

(
1 − b

2σ

)∫
x2 exp(bt) dt (2.4)
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where C is a constant of integration. Equation (2.4) is inserted into equation (2.1) to give

ẍ + (σ + 1)ẋ + σ(1 − r)x
= − exp(−bt)Cσx − 1

2x
3 − x[exp(−bt)](σ − 1

2b)

∫
x2 exp(bt) dt. (2.5)

At this stage we do not attempt to treat the integrodifferential equation (2.5). Instead in the
following we assume that

b = 2σ. (2.6)

The relation (2.6) between the parameters b and σ also appears in the construction of first
integrals to equations (1.1)–(1.3) [21]. In this paper it is of importance since all the solutions
we are going to construct hold subject to (2.6). Due now to equations (2.6), (2.5) becomes

ẍ + (σ + 1)x + σ(1 − r)x = − exp(−bt)Cσx − 1
2x

3. (2.7)

We introduce the functions u(φ), φ = φ(t) and v(t) through

x(t) = u(φ)v(t) φ = φ(t). (2.8)

The transformation (2.8) is inserted into equation (2.7) to give

v(φ̇)2u′′ + u′[vφ̈ + 2v̇φ̇ + (σ + 1)vφ̇] + u[v̈ + (σ + 1)v̇

+σ(1 − r)v + exp(−bt)Cσv] = − 1
2u

3v3 (2.9)

where the prime denotes differentiation with respect to φ. We require now that

vφ̈ + 2v̇φ̇ + (σ + 1)vφ̇ = 0 (2.10)

v̈ + (σ + 1)v̇ + σ(1 − r)v + exp(−bt)Cσv = 0. (2.11)

Equation (2.11) is solved by (particular solution)

v(t) = exp

[
−1

2
(σ + 1)t

]
Zp

[
2

√
Cσ

b
exp

(
−1

2
bt

)]
(2.12)

where

p = 1

b
[(σ − 1)2 + 4σr]1/2 b = 2σ (2.13)

and Zp is a cylinder function of order p. Equation (2.10) yields (particular solution)

φ̇ = exp[−(σ + 1)t]/v2. (2.14)

Due to equations (2.10)–(2.14) equation (2.9) becomes

u′′(φ) = − 1
2u

3 exp[−(σ + 1)t]Z6
p(exp(−σ t)(C/σ)1/2). (2.15)

In this section we consider the case p = 1/2. Then equation (2.13) gives

r = (2σ − 1)/4σ b = 2σ (2.16)

and

Z1/2(ζ ) = J1/2(ζ ) = (2/πζ )1/2 sin ζ ζ = (C/σ)1/2 exp(−σ t) (2.17)

where J1/2(ζ ) is the Bessel function of the first type. Equation (2.14) becomes, due to
equations (2.12) and (2.17) after integration and up to an inessential constant,

φ(t) = (π/2σ) cot ζ ζ = (C/σ)1/2 exp(−σ t) C > 0 (2.18)

the constraint C > 0 following from the requirement for real solutions. Equation (2.15) now
gives

u′′(φ) = −λu3 exp[(2σ − 1)t] sin6 ζ λ = (4/π3)(σ/C)3/2. (2.19)
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To simplify equation (2.19) further we set 2σ − 1 = 0. Thus equation (2.16) implies

σ = 1
2 b = 1 and r = 0. (2.20)

Finally equation (2.19) becomes by virtue of equations (2.18) and (2.20)

F ′′(p) = −εF 3(p)/(1 + p2)3 ε = (l/2C)3/2(4/π) (2.21)

where

F(p) = u(φ) φ = πp p = cot[(2C)1/2 exp(−t/2)]. (2.22)

Equation (2.21) has the form of a generalized Emden–Fowler equation [13,14]. In the following
section we show that equation (2.21) is amenable to a treatment in the context of the Lie
theory of extended groups [5, 9]. Thus we are able to construct the general exact solution to
equations (1.1)–(1.3) as announced in the introduction.

3. General exact solution for σ = 1
2 , b = 1 and r = 0

Equation (2.21) has a Lie point symmetry

G = ξ(p, F )∂p + η(p, F )∂F F = F(p) (3.1)

if [9]

G[2]N(F ′′, F, p)|N=0 = 0 (3.2)

where N = 0 is (2.21), the second extension of G, denoted by G[2], is given by

G[2] = G + (η′ − ξF ′)∂F ′ + (η′′ − ξ ′′F ′ − 2ξ ′F ′′)∂F ′′ (3.3)

and the prime denotes differentiation with respect to p.
Since both ξ and η are functions of p and F only, we obtain from equation (3.2) after

separating coefficients of F ′3, F ′2 and F ′ the determining equations

∂2ξ

∂F 2
= 0 (3.4)

∂2η

∂F 2
− 2

∂2ξ

∂F∂p
= 0 (3.5)

2
∂2η

∂F∂p
− ∂2ξ

∂p2
+ 3g

∂ξ

∂F
= 0 (3.6)

∂2η

∂p2
− g ∂η

∂F
+ 2g

∂ξ

∂p
+ ξ
∂g

∂p
+ η

∂g

∂F
= 0 (3.7)

the solution of which yields the single symmetry

G = (p2 + 1)∂p + pF∂F . (3.8)

Now to transform (2.21) to a p-free equation we seek the transformation (p, F ) −→
(P, f ):

P = φ1(p, F ) f = φ2(p, F ), (3.9)

which converts (3.8) to ∂P . This is achieved if

(1 + p2)
∂φ1

∂p
+ pF

∂φ1

∂F
= 1 (3.10)

(1 + p2)
∂φ2

∂p
+ pF

∂φ2

∂F
= 0. (3.11)
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From the characteristics of (3.10) and (3.11) we select the solutions

P = φ1(p, F ) = arctanp f = φ2(p, F ) = F(1 + p2)−1/2. (3.12)

Under the transformation (3.12) equation (2.21) becomes

d2f

dP 2
= −εf 3(P )− f (P ). (3.13)

Equation (3.13) has a first integral(
df

dP

)2

+ f 2 +
1

2
εf 4 = C1 C1 > 0. (3.14)

(We are informed that the same first integral is reported by Polyanin and Zaitsev [18, equation
(9), p 421], being derived by a method which is purported not to be based on symmetry.)
Integration of (3.14) yields

P − P0 =
(

2

ε

)l/2 ∫ f

f0

[(
A2 − f 2

1

)(
B2 + f 2

1

)]−1/2
df1 (3.15)

where

A = 1√
2


((2

ε

)2

+ 8
C1

ε

)1/2

− 2

ε




1/2

B = 1√
2


((2

ε

)2

+ 8
C1

ε

)1/2

+
2

ε




1/2

f (P0) = f0

(3.16)

and

f 2 � A2. (3.17)

Now (3.15) becomes [7]

P − P0 = (A2 + B2)−1/2

(
2

ε

)1/2

[F(γ1, δ)− F(γ2, δ)] (3.18)

where

γ1 = [arcsin(f/A)]

[
(A2 + B2)

(B2 + f 2)

]1/2

γ2 = [arcsin(f0/A)]

[
(A2 + B2)

(B2 + f 2
0 )

]1/2

δ = A

(A2 + B2)1/2

(3.19)

and F(γ1, δ) and F(γ2, δ) are elliptic integrals of the first kind. We note that equation (3.18)
holds for 0 < f0 � A, 0 < f � A. If, for example, f0 < 0, we may use the relation
F(γ2, δ) = −F(−γ2, δ). Thus in the following we assume without loss of generality that

0 < f0 < f (3.20)

the f being also subject to the constraint (3.17). To invert equation (3.18) we use the standard
relation

sin γ1 = sn( (3.21)
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where

( = ((P ) = (P − P0)[(A
2 + B2)ε/2]1/2 + F(γ2, δ) (3.22)

and sn( is the Jacobian elliptic function. From equations (3.19) and (3.21) we deduce

f (P ) = (ABsn()(B2 + A2cn2()−1/2 (3.23)

where automatically sn( > 0, due to equations (3.19)–(3.21) and the constraint (3.17) is
fulfilled.

Having now solved (3.13) we are in a position to construct the general exact solution to
equation (2.7) for σ = 1

2 , b = 1, r = 0. Recalling first that in equation (2.8) we need v(t) and
φ(t), we find v(t) from equations (2.12), (2.16), (2.17) and (2.20)

v(t) = exp(−t/2) sin[(2C)1/2 exp(−t/2)](2/π2C)1/4 (3.24)

and φ(t) from equation is (2.18) and (2.20)

φ(t) = cot[(2C)1/2 exp(−t/2)]π. (3.25)

Further from equations (2.22), (3.12) and (3.23) we obtain

u(φ) = ABsn[(arctan φ/π − P0)((A
2 + B2)ε/2)1/2 + F(γ2, δ)](1 + φ2/π2)1/2{

B2 + A2cn2[(arctan φ/π − P0)((A2 + B2)ε/2)1/2 + F(γ2, d)]
}1/2 . (3.26)

Finally (2.8) and (3.24)–(3.26) yield the general exact solution to equation (2.7). Since the
expression for x(t) obviously contains three constants of integration and y(t) and z(t) are
immediately obtainable from equations (2.3), (2.4) and (2.6), we have the general exact solution
of the Lorenz system (1.1)–(1.3) for σ = 1

2 , b = 1 and r = 0 (equation(2.20)) as announced in
the introduction to this paper. It is also clear that x(t), y(t) and z(t) tend asymptotically to zero
for t → ∞, that is the solution found (x(t), y(t), z(t)) of the Lorenz equations approaches the
stable (since r = 0) equilibrium point x = y = z = 0. One may notice that x(t) has the form
of a damped oscillation due to the appearance of sn(, a result to be expected since the basic
equation, (2.7), is a Duffing’s equation without the driving term.

The important point that should be stressed here is that by constructing the general exact
solution of equations (1.1)–(1.3) for σ = 1

2 , b = 1 and r = 0 we have actually proved directly
that the system of differential equations (1.1)–(1.3) is algebraically completely integrable for
the above parameter values. Since the Lorenz system passes the Painlevé test [23] for σ = 1

2 ,
b = 1 and r = 0 [20], our result conforms with the existing theorems [23] linking the necessity
of passing the Painlevé test with algebraic complete integrability through Abelian functions.
This is indeed so since the general exact solution found possesses the Painlevé property as it
is given in terms of Jacobian elliptic functions, the singularities of which in the complex time
plane are only simple poles [23].

We recall here that by means of a rescaling [23, 25] it has been shown that the Lorenz
system is algebraically completely integrable by means of elliptic functions for σ = 1

2 , b = 1
and r = 0 and t → ∞ with x(t) → 0, y(t) → 0 and z(t) → 0. Evidently this is just the
asymptotic case which is included in our general exact solution as we mentioned above.

Considering now the basic equation (2.7) and setting C = 0 we can construct [4], by
solving the resulting differential equations, a particular exact solution of the Lorenz system
again by means of Jacobian elliptic functions. This particular solution depends clearly on two
constants of integration and is valid for b = 2σ and 1

2 � σ � 2, 0 � r � 1/9. At this point
it is probably worth noting that the price we have to pay to show complete integrability of
the Lorenz equations is the restriction to one point in the parameter space, i.e. σ = 1

2 , b = 1
and r = 0, while the particular exact solution found earlier [4] holds for a wider range of
parameters. We return to this observation in section 4 of this paper.
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In the following we indicate how the particular exact solution [4] of equations (1.1)–(1.3)
can be obtained in the context of this paper.

On setting C = 0 in equation (2.7) and, consequently, in (2.11) we obtain for v(t)

v(t) = exp(µt) (3.27)

where µ is a solution of the equation µ2 + (σ + 1)µ + σ(1 − r) = 0, which for σ > 0 and
r � −(σ − 1)2/4σ always has real roots. Thus (2.14) yields

φ̇ = exp[−t (σ + 1 + 2µ)]. (3.28)

By virtue of equations (3.27) and (3.28) equation (2.9) becomes

u′′ exp[t (−2σ − 2 − 3µ)] = − 1
2u

3 exp(3µt). (3.29)

Equation (3.29) is integrable by means of elliptic functions provided −2σ − 2 − 3µ = 3µ,
which, since µ2 + (σ + 1)µ + σ(1 − r) = 0 and remembering that σ > 0, is written as

2(σ + 1)2 = 9σ(1 − r). (3.30)

Equation (3.30) gives, if we restrict ourselves to r � 0, as mentioned previously, the relations
1
2 � σ � 2, 0 � r � 1/9 with b = 2σ . The function x(t) is given, due to equations (2.8)
and (3.27)–(3.29), by

x(t) = u(φ) exp[− 1
3 (σ + 1)t] φ(t) = −3

exp[− 1
3 (σ + 1)t]

σ + 1
. (3.31)

The particular exact solution to the Lorenz system can now easily be written down. We note
that, as one would expect, condition (3.30) also follows from the requirement that equation (2.7)
with C = 0 passes the Painlevé test [23], a result which is obvious in the framework of our
method from equations (2.8) and (3.27)–(3.30). Furthermore the above particular solution
(x(t), y(t) and z(t)) approaches the stable (since r = 0 ) equilibrium point x = y = z = 0.

Finally we point out that only for σ = 1
2 , b = 1 and r = 0 can the aforementioned

particular solution with two constants of integration be obtained from the general exact solution.
To do this we let C → 0 in equation (2.21) and we obtain by virtue of (2.22)

F ′′(p) + ε
F 3(p)

p6
= 0 p → ∞ ε → ∞. (3.32)

Equation (3.32) is transformed by means of the substitution

F(p) = pW(1/p) (3.33)

into

W ′′(R) + εW 3(R) = 0 R = 1

p
R → 0 ε → ∞. (3.34)

From the definition of p in equations (2.22) and (3.33) we get

F(p) = exp(t/2)(2C)−1/2W(R)

p = exp(t/2)(2C)−1/2 R = l

p
C → 0 R → 0.

(3.35)

Thus equations (2.8), (2.22), (3.24) and (3.35) yield for x(t)

x(t) = exp(−t/2)(2/C)1/4π−1/2W(R) R = 1

p
C → 0 R → 0. (3.36)

Now we introduce a function

m(τ) = kW(R) τ = −2 exp(−t/2) R = −τ(C/2)1/2 R → 0. (3.37)
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Owing to the definition of ε in (2.21) and to (3.34) we choose k = (2/π)1/2(2C)−1/4 and so

m′′(τ ) + 1
2m

3(τ ) = 0 (3.38)

while x(t) in equation (3.36) becomes

x(t) = exp(−t/2)m(τ) τ = −2 exp(−t/2). (3.39)

On setting σ = 1, b = 1 and r = 0 in equations (3.29)–(3.31) we conclude that the x(t)
defined by equation (3.31) is identical with that defined by equations (3.38) and (3.39).

4. Investigation of other cases

Suppose we chose p = 3
2 in equation (2.15). Then equation (2.13) gives

r = (4σ − 1)(2σ + 1)/4σ b = 2σ (4.1)

and

Z3/2(ζ ) = J3/2(ζ ) = 21/2(πζ )−1/2

(
sin ζ

ζ
− cos ζ

)

ζ =
(
C

σ

)1/2

exp(−σ t)
(4.2)

where J3/2 is the Bessel function of the first kind. Equation (2.14) yields, owing to
equations (2.12) and (4.2), after integration

φ(t) = − π(ζ sin ζ + cos ζ )

2σ(ζ cos ζ − sin ζ )
(4.3)

by application of the formula [7]∫
ζ 2 dζ

(ζ cos ζ − sin ζ )2
= ζ sin ζ + cos ζ

ζ cos ζ − sin ζ
. (4.4)

Consequently equation (2.15) becomes, after some algebra,

u′′(φ) = −ε1u
3(φ) exp[t (8σ − 1)](ζ 2 + 1)3

π6(4σ 2φ2/π2 + 1)3

ε1 = 4π3(σ/C)9/2.

(4.5)

We simplify (4.5) by setting 8σ − 1 = 0, i.e. σ = 1/8. Thus equation (4.1) shows that
r = −5/4, that is we obtain r < 0. At this point we have two alternatives, either to give up
further treatment of equation (4.5) since, in the original context in which the Lorenz equations
were derived, we have r > 0, or to consider equations (1.1)–(1.3) as a dynamical system in
the properties of which we are interested and, thus, to also allow r < 0. We choose the second
alternative and equation (4.5) gives

u′′(φ) = − ε1u
3(φ)(ζ 2 + 1)3

π6(φ2/16π2 + 1)3
ε1 = 4π3(1/8C)9/2. (4.6)

We have not been able to invert equation (4.3) to eliminate ζ from equation (4.6). Nevertheless
we are able to solve equation (4.6) in the limit as t → ∞, which by virtue of equations (4.2)
and (4.3) corresponds to ζ → 0, φ → ∞. Hence (4.6) is written as

u′′(φ) = −ε1(16)3u3(φ)/φ6 φ → ∞. (4.7)

On introducing into (4.7) the functionW1(1/φ) through

u(φ) = φW1(1/φ) (4.8)
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we find that (4.7) becomes

W ′′
1 (/) + (16)3ε1W

3
1 (/) = 0 / = 1/φ (4.9)

which is immediately integrable in terms of elliptic functions.
The case p = 5/2 in equation (2.15) yields

r = (24σ 2 + 2σ − 1)/4σ b = 2σ (4.10)

φ(t) = k1
3 cos ζ + 3ζ sin ζ − ζ 2 cos ζ

3 sin ζ − 3ζ cos ζ − ζ 2 sin ζ
(4.11)

u′′ = −ε2u
3(φ) exp[t (14σ − 1)](9 + 3ζ 2 + ζ 4)3

(k2φ2 + 1)3
(4.12)

where k1, ε2 and k2 are positive constants. Proceeding along the lines of equation (4.5) we set
in equation (4.12) 14σ − 1 = 0, i.e. σ = 1/14, thus obtaining from (4.10) r = −18/7. The
resulting equation from (4.12), due to the difficulty of inverting equation (4.11) can then be
solved in the limit as t → ∞, i.e. ζ → 0 and φ → −∞ by means of elliptic functions.

We now recall that the limit ζ → 0 can also be achieved by letting C → 0 in (4.2),
but C → 0 implies that we actually solve equation (2.7) with C = 0 and, thus, find
particular solutions to the Lorenz system, as we saw in section 3. These particular solutions
to equations (1.1)–(1.3) correspond to the following two cases here:

Case p = 3/2 i.e. σ = 1/8 b = 1/4 r = −5/4

Case p = 5/2 i.e. σ = 1/14 b = 1/7 r = −18/7.
(4.13)

By solving equations (4.7)–(4.9) and the corresponding equations, which result from (4.12)
for σ = 1/14, ζ → 0, while in both cases we have C → 0, we can obtain the above particular
solutions in terms of elliptic functions and for the parameter values (4.13). The procedure we
follow is identical to the one we used in extracting the particular solution to equations (1.1)–
(1.3) for σ = 1/2, b = 1, r = 0 from the relevant general solution (equations (3.32)–(3.39)).

At this point we stress two important aspects of the above procedure. Firstly, we utilize
in all three p-cases the basic differential equations (2.21) for p = 1/2, (4.6) for p = 3/2
and (4.12) for p = 5/2, the general solutions of which give us essentially the general exact
solution to the Lorenz system for the relevant parameter values (2.20) and (4.13) respectively.
In other words we do not need the analytic form of the general solution, which for the time
being is known only for σ = 1/2, b = 1, r = 0, to construct the respective particular exact
solution. Secondly, all three particular solutions are expressed by means of elliptic functions
and, consequently, they are also obtainable in the framework of equations (3.27)–(3.30). In
fact the parameter values (4.13) satisfy condition (3.30).

Thus in summary we have the following. For (σ, b, r) fulfilling relation (3.30)
equation (2.7) passes for C = 0 the Painlevé test, as noted previously, and is integrable
through elliptic functions. However, out of all possible (σ, b, r) values given by (3.30), only
for (σ = l/2, b = 1, r = 0), (σ = 1/8, b = 1/4, r = −5/4) and (σ = 1/14, b = 1/7, r =
−18/7) have we been able to find differential equations the general solutions of which lead
us immediately to general exact solutions of the Lorenz system and, furthermore, only for
σ = l/2, b = 1, r = 0 could we solve by means of Jacobian elliptic functions the relevant
differential equation (2.21).

We now observe that for (σ, b, r) given by equation (4.13) the Lorenz equations do not
pass the Painlevé test. Nevertheless there are dynamical systems [23] which do not pass the
Painlevé test and yet are algebraically completely integrable. Thus, in view of the common
features exhibited by the particular and general solutions to the Lorenz system for the parameter
values (2.20), (4.13), as noted above, and in spite of the apparent difficulty in inverting
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equations (4.3) and (4.11), we conjecture that equations (4.3) and (4.6) on the one hand and
equations (4.11) and (4.12) (σ = 1/14) on the other are integrable through functions which
are generalizations of Jacobian elliptic functions. These generalizations, however complicated
they may be, should degenerate for C → 0 to Jacobian elliptic functions. Our hypothesis
includes possibly further (σ, b, r) values, which are generated by considering higher p-values
in equation (2.15) of the form p = (2n + 1)/2 with n = 0, 1, 2, 3, . . . .

In conclusion we make three further points. Firstly, the consideration of the Bessel function
of the second kind Np(ζ ) in equation (2.15) as well as the introduction of linear combinations
of cylinder functions in equation (2.12) and following do not yield new results, as probably one
would expect. Secondly, apart from the case (σ = 1/2, b = 1, r = 0), equations (1.1)–(1.3)
pass the Painlevé test for (σ = 1/3, b = 0, r = arbitrary) and (σ = 1, b = 2, r = 1/9). The
case (σ = 1/3, b = 0, r = arbitrary) is not included in our approach due to the constraint
we impose on b and σ , i.e. b = 2σ . However, the case (σ = 1, b = 2, r = 1/9) implies
by virtue of equation (2.13) that p = 1/3, which leads us to using Airy functions in the
respective calculations. Thirdly, one could envisage the construction of closed form solutions
to equations (1.1)–(1.3) for all b > 0, σ > 0 with b = 2σ . This could be attempted by
considering equations (2.12)–(2.15) in which case we should first calculate

φ(t) = − 1

σ

∫
dζ

ζJ 2
p(ζ )

(ζ = (C/σ)1/2 exp(−σ t))

= π

2σ sin(pπ)

J−p(ζ )
Jp(ζ )

(4.14)

where Jp(ζ ) is the Bessel function of the first kind, invert equation (4.14), insert the result
into equation (2.15) and solve the resulting generalized Emden–Fowler equation. Although
the computational difficulties encountered in such a program may be hard to surmount, at least
we have an analytical procedure which in principle can be followed.

5. Non-Painlevé particular solutions

Our starting point is equation (2.9) which we convert to a time-dependent oscillator with
constant coefficient anharmonic force [2]. Thus we require firstly that (2.10) and, hence,
(2.14) hold. Then for the coefficient of u3 in the differential equation we seek to make a
constant k and set

−k = −1

2

v2

φ̇2
k > 0 (5.1)

since we require φ(t) and v(t) to be real. Equations (2.14) and (5.1) yield

v(t) = (2k)1/6 exp[− 1
3 (σ + 1)t] (5.2)

so that (2.14) gives

φ(t) = −3 exp[− 1
3 (σ + 1)t]

(2k)1/3(σ + 1)
. (5.3)

The coefficient of u now becomes, due to equations (2.9), (5.2) and (5.3),
1

v(φ̇)2
[v̈ + (σ + 1)v̇ + σ(1 − r)v + Cσv exp(−2σ t)] = A

φ2
+ Bφ(4σ−2)/(σ+1) (5.4)

where

A = [9σ(1 − r)− 2(σ + 1)2]

(σ + 1)2
(5.5)

B = 9Cσ [−(2k)1/3(σ + 1)/3]6σ/(σ+1)

(σ + 1)2
. (5.6)
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Due to equations (2.10), (5.1) and (5.4) equation (2.9) is written as

u′′(φ) +

(
A

φ2
+ Bφ(4σ−2)/(σ+1)

)
u(φ) + u3(φ) = 0. (5.7)

For a Painlevé analysis of equation (5.7) we let

u = αφp + µφp+k. (5.8)

On substituting (5.6) into (5.7) and keeping terms to first order in b we obtain

αp(p − 1)φp−2 + µ(p + k)(p + k − 1)φp+k−2 + Aαφp−2 + Aµφp+k−2

+Bαφp+(4σ−2)/(σ+1) + Bµφp+k+(4σ−2)/(σ+1) + α3φ3p + 3α2µφ3p+k = 0. (5.9)

On ignoring µ we obtain that the powers of the leading terms balance when either

3p = p − 2 (5.10)

or

p + (4σ − 2)/(σ + 1) = 3p. (5.11)

For possible balance of all leading terms we get either from equation (5.10) or
equation (5.11) that σ = 0 which is trivial and can be ignored. Furthermore, for equation (5.11)
to correspond to the dominant terms we must also have, due to (5.10), 3p < p − 2 which
leads to −1 < σ < 0. In this paper we consider only σ > 0 (see section 3) and, thus, we are
left with equation (5.10) which gives p = −1. Therefore the coefficients of the leading terms
balance if

2α + Aα + α3 = 0. (5.12)

Equation (5.12) shows that

α2 = −(2 + A). (5.13)

The resonances follow from equation (5.9) by considering the first order terms in µ.
We find, therefore, that for equation (5.7) the Painlevé property is possibly satisfied only if
A = 0 and p = −1, the resonances being at k = −1 (generic ) and k = 4. Consequently
equation (5.7) now becomes

u′′ + Bφmu + u3 = 0 m = (4σ − 2)/(σ + 1) (5.14)

provided A = 0, i.e.

2(σ + 1)2 = 9σ(1 − r) (5.15)

with the dominance being shared by u′′ and u3.
For u(φ) to be expanded in integral powers of φ the number m in equation (5.14) must

be an integer. Note that a fractional power expansion [2] is not admissible since for u3 the
power is φ1/2 [2] which causes problems as it makes u complex and we are interested in real
solutions. We thus have the following cases for which equation (5.7) possibly possesses the
Painlevé property:

m = −1 σ = 1/5

m = 0 σ = 1/2

m = 1 σ = 1

m = 2 σ = 2

m = 3 σ = 5

(5.16)

since we have σ > 0.
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Now the full Painlevé analysis requires an expansion about an arbitrary point φ0 in the
complex φ-plane, i.e. we put

u =
∞∑
n=0

an(φ − φ0)
n−1 (5.17)

in

u′′(φ) + g(φ)u(φ) + u3(φ) = 0 (5.18)

since at the point φ0 we have a pole [2], and expand g(φ) as a Taylor series

g(φ) =
∞∑
n=0

1

n!
g(n)(φ0)(φ − φ0)

n. (5.19)

One finds [2] that g′′(φ0) = 0,∀φ0, for consistency. Hence g(φ) = α + βφ, α and β being
constants. On applying the aforementioned result to equation (5.14), where g(φ) = Bφm, we
deduce that for B �= 0 equation (5.14) possesses the Painlevé property ifm = 0, σ = 1/2 and
m = 1, σ = 1 according to equation (5.16). Due to the validity of equation (5.15) we get

σ = 1/2 b = 1 r = 0 (m = 0)

σ = 1 b = 2 r = 1/9 (m = 1)
(5.20)

for equation (5.14) to have the Painlevé property. For the (σ, b, r) values in (5.20) clearly
the Lorenz equations (1.1)–(1.3) possess the Painlevé property, a result in accordance with
previous analyses [25].

For m = 0 equation (5.14) becomes

u′′ + Bu + u3 = 0 (5.21)

which is of the form of equation (3.13) and, thus, integrable through elliptic functions. We
observe that the general solution of (5.21) and equations (2.8), (5.2) and (5.3) complemented
by (2.3), (2.4) and (2.6) yield the general exact solution to the Lorenz equations (1.1)–(1.3)
for σ = 1/2, b = 1, r = 0. This is the solution we already know from section 3 and have
rederived here in an apparently simple manner. However, the approach of section 2 and the
subsequent application of the Lie theory [5, 9] in section 3 yield besides the aforementioned
general solution, in section 4 further possible integrable cases not following from a Painlevé
analysis and also furnishes us with an analytical procedure for all r , b and σ with b = 2σ .

The case m = 1 in equation (5.14) is treated by letting

u(φ) =
∞∑
n=0

an−1φ
n−1. (5.22)

We obtain a2
−1 = −2 (cf (5.13) and (5.15)), a0 = 0, a1 = 0, a2 = Ba−1/4 and a3 is arbitrary

as expected. The solution (5.22) corresponds to σ = 1, b = 2, r = 1/9 and is of no interest
since u(φ) becomes complex. This again contrasts the procedure of sections 2–4, where for
σ = 1, b = 2, r = l/9 the general exact solution to the Lorenz system can in principle be
obtained in real form.

The case B = 0 corresponds to C = 0 (equation (5.6)) and

u′′ + u3 = 0. (5.23)

Clearly the case A = 0, B = 0, owing to equations (2.8), (5.2), (5.3), (5.5), (5.6) and (5.50),
is just the particular exact solution to equations (1.1)–(1.3) which was discussed in section 3.

It is now evident from the above that the Painlevé analysis of equation (5.7) produces
either known results or complex valued u(φ). In the following we seek non-Painlevé particular
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solutions of equation (5.7). These solutions are represented in the form of power series. In the
present paper we restrict ourselves to expansions motivated by the Painlevé findings. Hence,
we consider equation (5.7) with AB �= 0 for

σ = 1 b = 2 r �= 1/9

A = 9(−r + 1/9)/4 B = −4kC/3
(5.24)

we make the ansatz

u(φ) =
∞∑
n=0

anφ
3n−1. (5.25)

The expansion (5.25) originates from the Painlevé series (5.22) valid for σ = 1, b =
2, r = 1/9, where for a3 = 0 the powers increase by multiples of three. Upon insertion of
equation (5.25) into (5.7) we obtain

a2
0 = −(A + 2)

a1 = Ba0/[2(A + 2)]
a2 = B2a0/[2

3(7 − A)(2 + A)]
a3 = B2a0(11 + A)/[24(A + 2)2(25 − A)(7 − A)], etc.

(5.26)

We get, therefore, a series proceeding in powers of φ3 as

u(φ) = a0φ
−1

{
1 +

Bφ3

2(A + 2)
+

B2φ6

22(A + 2)(7 − A) +
B3φ9(11 + A)

24(A + 2)2(7 − A)(25 − A) + · · ·
}
.

(5.27)

By virtue of equations (2.8), (5.2), (5.3) and (5.27)

x(t) = −a0(2
3/2)3−1k1/2

{
1 +

Bφ3

2(A + 2)
+ · · ·

}
φ(t) = −3 exp(−2t/3)(16k)−1/3.

(5.28)

Since we require x(t) given by equation (5.28) to be real, it follows from equations (5.24)
and (5.26) that A < −2, i.e. r > 1.

For t → ∞ equation (5.28) shows that x → −23/2a0k
1/2/3a. Since the

nonzero equilibrium points of the system (1.1)–(1.3) for (σ = 1, b = 2, r > 1) are
(±√

2(r − 1),±√
2(r − 1), r − 1), it is clear that due to equations (5.24) and (5.26) we must

choose k = 1 in the expression −23/2a0k
1/2/3. Thus the constant k is fixed in equation (5.28).

Regarding convergence of the series in (5.28) we observe that we have an expansion in
Bφ3 = 9C[exp(−2t)]/4 (k = 1). Therefore the above series converges for all C if t is
sufficiently large or, equivalently, for all t if C is small enough.

We conclude that equations (5.28), (2.3), (2.4) and (2.6) constitute two particular non-
Painlevé exact solutions to the system (1.1)–(1.3) depending on one constant of integration
C and valid for k = 1 in equations (5.2) and (5.3) and σ = 1, b = 2, r > 1. The
above solutions are generated by the two different signs of a0 in equation (5.26) and
approach the equilibrium points (

√
2(r − 1),

√
2(r − 1), r − 1) for a0 = − 3

2

√
r − 1 and

(−√
2(r − 1),−√

2(r − 1), r − 1) for a0 = 3
2

√
r − 1 respectively.

Next we consider
σ = 1

2 b = 1 r �= 0
A = −2r B = (2k)2/3C/2.

(5.29)

The appropriate expansion is now

u(φ) =
∞∑
n=0

anφ
2n−1. (5.30)
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Proceeding as in equation (5.24) we deduce two further particular non-Painlevé exact solutions
of the system (1.1)–(1.3) depending on one integration constant C and holding for k = 1 in
equations (5.2) and (5.3) and σ = 1

2 , b = 1, r > 1. These solutions approach the equilibrium
points (

√
(r − 1,

√
r − 1, r − 1) for a0 = −√

2(r − 1) and (−√
r − 1,−√

r − 1, r − 1) for
a0 = √

2(r − 1) respectively and are given by equations (2.3), (2.4) and (2.6) with

x(t) = −a0

{
1 +

Bφ2

2(A + 3)
− B2φ4

23(A + 3)2
− B3φ6

24(A + 3)3(7 − A) + · · ·
}
. (5.31)

In equation (5.31) the series proceeds in powers of Bφ2 = 2C exp(−t) and is convergent
subject to the same conditions as in the case of the expansion (5.28). Note that the value
A = −3 must be excluded as it leads in the course of the calculation of an in equation (5.30)
to a0 = 0 and thus to the trivial u(φ) = 0.

For the sake of completeness we have also investigated the (m, σ) cases in equation (5.16)
for which (5.7) does not possess the Painlevé property. To avoid repetitious material we
merely state our results. We obtain precisely, as in the cases (5.24) and (5.29), x(t) in the form
of series and, consequently, particular exact solutions of the Lorenz equations approaching
(±√

2σ(r − 1),±√
2σ(r − 1), r − 1).

We now finish our investigation of equation (5.7) by submitting it to a Lie analysis. Writing
for brevity m = (4σ − 2)/(σ + 1) (equation (5.14)) we find that (5.7) becomes

u′′(φ) +

(
A

φ2
+ Bφm

)
u(φ) + u3(φ) = 0. (5.32)

To obtain more general results we seek the functions g(φ) for which the differential equation

u′′(φ) + g(φ)u(φ) + u3(φ) = 0 (5.33)

possesses the symmetry

G = ξ(φ, u)∂φ + η(φ, u)∂u. (5.34)

By following the method applied in section 3 we obtain that ξ(φ, u) and η(φ, u)satisfy

∂2ξ

∂u2
= 0 (5.35)

∂2η

∂u2
− 2

∂2ξ

∂φ∂u
= 0 (5.36)

2
∂2η

∂φ∂u
+ 3[g(φ)u(φ) + u3(φ)]

∂ξ

∂u
− ∂2ξ

∂φ2
= 0 (5.37)

∂2η

∂φ2
− [g(φ)u(φ) + u3(φ)]

∂η

∂u
+ 2[g(φ)u(φ) + u3(φ)]

∂ξ

∂φ

+ξg′(φ)u′(φ) + g(φ)η + 3ηu2(φ) = 0. (5.38)

From equation (5.35)

ξ(φ, u) = a(φ) + b(φ)u(φ). (5.39)

From equation (5.36)

η(φ, u) = b′(φ)u2(φ) + c(φ)u(φ) + d(φ). (5.40)

Owing to equations (5.37), (5.39) and (5.40)

b(φ) = 0 a′′(φ) = 2c′(φ) (5.41)

and thus, due to equations (5.41), we obtain from (5.38)

d(φ) = 0 c(φ) + a′(φ) = 0 c′′(φ) + 2a′(φ)g(φ) + a(φ)g′(φ) = 0. (5.42)
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Equations (5.42) yield

c(φ) = C0 a(φ) = A0 − C0φ

g(φ) = K0

(A0 − C0φ)2
(5.43)

C0, A0, K0 being constants. The general result (5.43) implies that equation (5.32) has the
symmetry (5.34) provided B = 0, where also A = K0, A0 = 0 and C0 = −1. The condition
B = 0 shows that in equation (5.6) we must take

C = 0. (5.44)

Consequently equation (5.32) becomes

u′′(φ) +

(
A

φ2

)
u(φ) + u3(φ) = 0 (5.45)

and possesses the symmetry

G = φ∂φ − u∂u. (5.46)

By means of the transformation (cf section 3)

Y = uφ X = log(−φ) (5.47)

equation (5.45) is written as

Y ′′ − 3Y ′ + (A + 2)Y + Y 3 = 0 (5.48)

where the prime denotes differentiation with respect to X. Excluding the case A = 0 in
equation (5.45), which leads to the particular exact solution of the Lorenz equations discussed
in section 3, we observe that equation (5.48) has the singular solution

Y (X) = ±(−A− 2)1/2 (5.49)

and this is real providedA < −2, which yields by equation (5.5), r > 1. From equations (2.8),
(5.2), (5.3), (5.47) and (5.49)

x(t) = ± 1
3 [−A− 2]1/2[(σ + 1)(2k)1/2]. (5.50)

By choosing in equation (5.50) k = 1 it is clear that we obtain the nonzero constant
solution of the Lorenz equations where the initial conditions are the equilibrium points
(±√

2σ(r − 1),±√
2σ(r − 1), r − 1), r > 1.

Having dispensed with the singular solution of equation (5.48) we employ the substitution

w(Y ) = dY (X)

dX
(5.51)

to reduce equation (5.48) to an Abel’s equation of the second kind, namely

wẇ − 3w + (A + 2)Y + Y 3 = 0 (5.52)

the dot standing for d/dY . We have treated equation (5.52) in detail previously [3, 4]. On
the basis of equations (2.3), (2.4), (2.6), (2.8), (5.2) and (5.3) and following the analysis
of [3, 4] we may prove the existence of two particular exact solutions (x(t), y(t), z(t))
of the Lorenz equations, monotonic decreasing, valid for r > 1 and approaching
(±√

2σ(r − 1),±√
2σ(r − 1), r − 1). These solutions depend on one constant of integration

and have essentially the same structure as the monotonic decreasing solutions found earlier [4].
It is noteworthy that on endowing equation (2.7) with condition (5.44) and subsequently
investigating it in the context of the theory of nonlinear differential equations [3, 4] we obtain
practically the same results as are found by transforming equation (2.7) to (5.7) and applying
the Lie theory [5, 9].
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6. Conclusions

The objective of this paper has been to seek exact solutions of the Lorenz equations. By
transforming the Lorenz system for b = 2σ to a generalized Emden–Fowler equation and
subsequently applying the Lie theory of extended groups we found in closed form the general
exact solution of the Lorenz equations for σ = 1

2 , bb = 1, r = 0. Alternatively by reducing the
Lorenz system for b = 2σ to a time-dependent oscillator with constant coefficient anharmonic
term and by employing the Painlevé analysis we have rederived the general exact solution
mentioned above. The appropriate extension of the Painlevé method results provides in the
form of power series further particular exact solutions not possessing the Painlevé property.
As a final remark we stress that, although the Lie analysis and the Painlevé approach seem
to complement each other, the Lie theory appears to be instrumental in an attempt for the
construction of the general exact solution of the Lorenz equations for all b = 2σ .
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integrals and the Painlevé property in Lotka–Volterra and quadratc systems Proc. R. Soc. 452 859–80
[9] Leach P G L 1981 An exact invariant for a class of time-dependent anharmonic oscillators with cubic

anharmonicity J. Math. Phys. 22 465–70
[10] Leach P G L 1999 Hierarchies of similarity symmetries and singularity analysis in Dynamical Systems, Plasmas
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